Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2320397

RESUMEN

We have previously published research on the anti-viral properties of an alkaloid mixture extracted from Nuphar lutea, the major components of the partially purified mixture found by NMR analysis. These are mostly dimeric sesquiterpene thioalkaloids called thiobinupharidines and thiobinuphlutidines against the negative strand RNA measles virus (MV). We have previously reported that this extract inhibits the MV as well as its ability to downregulate several MV proteins in persistently MV-infected cells, especially the P (phospho)-protein. Based on our observation that the Nuphar extract is effective in vitro against the MV, and the immediate need that the coronavirus disease 2019 (COVID-19) pandemic created, we tested here the ability of 6,6'-dihydroxythiobinupharidine DTBN, an active small molecule, isolated from the Nuphar lutea extract, on COVID-19. As shown here, DTBN effectively inhibits SARS-CoV-2 production in Vero E6 cells at non-cytotoxic concentrations. The short-term daily administration of DTBN to infected mice delayed the occurrence of severe clinical outcomes, lowered virus levels in the lungs and improved survival with minimal changes in lung histology. The viral load on lungs was significantly reduced in the treated mice. DTBN is a pleiotropic small molecule with multiple targets. Its anti-inflammatory properties affect a variety of pathogens including SARS-CoV-2 as shown here. Its activity appears to target both pathogen specific (as suggested by docking analysis) as well as cellular proteins, such as NF-κB, PKCs, cathepsins and topoisomerase 2, that we have previously identified in our work. Thus, this combined double action of virus inhibition and anti-inflammatory activity may enhance the overall effectivity of DTBN. The promising results from this proof-of-concept in vitro and in vivo preclinical study should encourage future studies to optimize the use of DTBN and/or its molecular derivatives against this and other related viruses.


Asunto(s)
Alcaloides , COVID-19 , Nuphar , Ratones , Animales , SARS-CoV-2 , Nuphar/química , Alcaloides/farmacología , Alcaloides/uso terapéutico , Alcaloides/química , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Ratones Transgénicos
2.
J Nat Prod ; 86(4): 1061-1073, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2297701

RESUMEN

Botanical natural products have been widely consumed for their purported usefulness against COVID-19. Here, six botanical species from multiple sources and 173 isolated natural product compounds were screened for blockade of wild-type (WT) SARS-CoV-2 infection in human 293T epithelial cells overexpressing ACE-2 and TMPRSS2 protease (293TAT). Antiviral activity was demonstrated by an extract from Stephania tetrandra. Extract fractionation, liquid chromatography-mass spectrometry (LC-MS), antiviral assays, and computational analyses revealed that the alkaloid fraction and purified alkaloids tetrandrine, fangchinoline, and cepharanthine inhibited WT SARS-CoV-2 infection. The alkaloids and alkaloid fraction also inhibited the delta variant of concern but not WT SARS-CoV-2 in VeroAT cells. Membrane permeability assays demonstrate that the alkaloids are biologically available, although fangchinoline showed lower permeability than tetrandrine. At high concentrations, the extract, alkaloid fractions, and pure alkaloids induced phospholipidosis in 293TAT cells and less so in VeroAT cells. Gene expression profiling during virus infection suggested that alkaloid fraction and tetrandrine displayed similar effects on cellular gene expression and pathways, while fangchinoline showed distinct effects on cells. Our study demonstrates a multifaceted approach to systematically investigate the diverse activities conferred by complex botanical mixtures, their cell-context specificity, and their pleiotropic effects on biological systems.


Asunto(s)
Alcaloides , Antineoplásicos , Bencilisoquinolinas , COVID-19 , Stephania tetrandra , Stephania , Humanos , Stephania tetrandra/química , SARS-CoV-2 , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/química , Alcaloides/farmacología , Alcaloides/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antivirales/farmacología , Stephania/química
3.
Chem Biodivers ; 20(6): e202201197, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-2295949

RESUMEN

Four undescribed biflavonoid alkaloids, sinenbiflavones A-D, were isolated from Cephalotaxus sinensis using a MS/MS-based molecular networking guided strategy. Their structures were elucidated by series of spectroscopic methods (HR-ESI-MS, UV, IR, 1D, and 2D NMR). Sinenbiflavones A-D are the first examples of amentoflavone-type (C-3'-C-8'') biflavonoid alkaloids. Meanwhile, sinenbiflavones B and D are the unique C-6-methylated amentoflavone-type biflavonoid alkaloids. Sinenbiflavone D showed weak SARS-CoV-2 3CLpro inhibitory activity with 43 % inhibition rate at 40 µM.


Asunto(s)
Alcaloides , Biflavonoides , COVID-19 , Cephalotaxus , Biflavonoides/química , Estructura Molecular , Cephalotaxus/química , Espectrometría de Masas en Tándem , SARS-CoV-2 , Alcaloides/química , Espectroscopía de Resonancia Magnética
4.
Molecules ; 27(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2163530

RESUMEN

Cepharanthine is an active ingredient separated and extracted from Stephania cepharantha Hayata, a Menispermaceae plant. As a bisbenzylisoquinoline alkaloid, cepharanthine has various pharmacological properties, including antioxidant, anti-inflammatory, immunomodulatory, antitumoral, and antiviral effects. Following the emergence of coronavirus disease 2019 (COVID-19), cepharanthine has been found to have excellent anti-COVID-19 activity. In this review, the important physicochemical properties and pharmacological effects of cepharanthine, particularly the antiviral effect, are systematically described. Additionally, the molecular mechanisms and novel dosage formulations for the efficient, safe, and convenient delivery of cepharanthine are summarized.


Asunto(s)
Alcaloides , Bencilisoquinolinas , COVID-19 , Humanos , Bencilisoquinolinas/farmacología , Alcaloides/química , Antivirales/farmacología
5.
Arch Pharm Res ; 45(9): 631-643, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-2035372

RESUMEN

(±)-Decumicorine A (1) and (±)-epi-decumicorine A (2), two pairs of enantiomeric isoquinoline alkaloids featuring a novel phenylpropanoid-conjugated protoberberine skeleton, were isolated and purified from the rhizomes of Corydalis decumbens. The separation of (±)-1 and (±)-2 was achieved by chiral HPLC to produce four optically pure enantiomers. The structures and absolute configurations of compounds (-)-1, (+)-1, (-)-2, and (+)-2 were elucidated by spectroscopic analysis, ECD calculations, and X-ray crystallographic analyses. The two racemates were generated from a Diels-Alder [4 + 2] cycloaddition between jatrorrhizine and ferulic acid in the proposed biosynthetic pathways, which were fully verified by a biomimetic synthesis. Moreover, compound (+)-1 exhibited an antiviral entry effect on SARS-CoV-2 pseudovirus by blocking spike binding to the ACE2 receptor on HEK-293T-ACE2h host cells.


Asunto(s)
Alcaloides , Tratamiento Farmacológico de COVID-19 , Corydalis , Alcaloides/química , Enzima Convertidora de Angiotensina 2 , Antivirales/farmacología , Alcaloides de Berberina , Biomimética , Corydalis/química , Humanos , Isoquinolinas , Estructura Molecular , Rizoma , SARS-CoV-2
6.
Phytother Res ; 36(7): 2686-2709, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1941309

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has a high mortality rate and transmissibility. In this context, medicinal plants have attracted attention due to the wide availability and variety of therapeutic compounds, such as alkaloids, a vast class with several proven pharmacological effects, like the antiviral and anti-inflammatory activities. Therefore, this scoping review aimed to summarize the current knowledge of the potential applicability of alkaloids for treating COVID-19. A systematic search was performed on PubMed and Scopus, from database inception to August 2021. Among the 63 eligible studies, 65.07% were in silico model, 20.63% in vitro and 14.28% clinical trials and observational studies. According to the in silico assessments, the alkaloids 10-hydroxyusambarensine, cryptospirolepine, crambescidin 826, deoxynortryptoquivaline, ergotamine, michellamine B, nigellidine, norboldine and quinadoline B showed higher binding energy with more than two target proteins. The remaining studies showed potential use of berberine, cephaeline, emetine, homoharringtonine, lycorine, narciclasine, quinine, papaverine and colchicine. The possible ability of alkaloids to inhibit protein targets and to reduce inflammatory markers show the potential for development of new treatment strategies against COVID-19. However, more high quality analyses/reviews in this field are necessary to firmly establish the effectiveness/safety of the alkaloids here described.


Asunto(s)
Alcaloides , Tratamiento Farmacológico de COVID-19 , Alcaloides/química , Alcaloides/farmacología , Alcaloides/uso terapéutico , Antivirales/química , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , SARS-CoV-2
7.
Molecules ; 27(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1820341

RESUMEN

Piper nigrum, or black pepper, produces piperine, an alkaloid that has diverse pharmacological activities. In this study, N-aryl amide piperine analogs were prepared by semi-synthesis involving the saponification of piperine (1) to yield piperic acid (2) followed by esterification to obtain compounds 3, 4, and 5. The compounds were examined for their antitrypanosomal, antimalarial, and anti-SARS-CoV-2 main protease activities. The new 2,5-dimethoxy-substituted phenyl piperamide 5 exhibited the most robust biological activities with no cytotoxicity against mammalian cell lines, Vero and Vero E6, as compared to the other compounds in this series. Its half-maximal inhibitory concentration (IC50) for antitrypanosomal activity against Trypanosoma brucei rhodesiense was 15.46 ± 3.09 µM, and its antimalarial activity against the 3D7 strain of Plasmodium falciparum was 24.55 ± 1.91 µM, which were fourfold and fivefold more potent, respectively, than the activities of piperine. Interestingly, compound 5 inhibited the activity of 3C-like main protease (3CLPro) toward anti-SARS-CoV-2 activity at the IC50 of 106.9 ± 1.2 µM, which was threefold more potent than the activity of rutin. Docking and molecular dynamic simulation indicated that the potential binding of 5 in the 3CLpro active site had the improved binding interaction and stability. Therefore, new aryl amide analogs of piperine 5 should be investigated further as a promising anti-infective agent against human African trypanosomiasis, malaria, and COVID-19.


Asunto(s)
Alcaloides , Antimaláricos , COVID-19 , Piper nigrum , Alcaloides/química , Alcaloides/farmacología , Animales , Antimaláricos/farmacología , Benzodioxoles , Humanos , Mamíferos , Simulación del Acoplamiento Molecular , Piper nigrum/química , Piperidinas , Alcamidas Poliinsaturadas/química , Alcamidas Poliinsaturadas/farmacología
8.
Mar Drugs ; 20(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1725847

RESUMEN

The COVID-19 pandemic and its continuing emerging variants emphasize the need to discover appropriate treatment, where vaccines alone have failed to show complete protection against the new variants of the virus. Therefore, treatment of the infected cases is critical. This paper discusses the bio-guided isolation of three indole diketopiperazine alkaloids, neoechinulin A (1), echinulin (2), and eurocristatine (3), from the Red Sea-derived Aspergillus fumigatus MR2012. Neoechinulin A (1) exhibited a potent inhibitory effect against SARS-CoV-2 Mpro with IC50 value of 0.47 µM, which is comparable to the reference standard GC376. Despite the structural similarity between the three compounds, only 1 showed a promising effect. The mechanism of inhibition is discussed in light of a series of extensive molecular docking, classical and steered molecular dynamics simulation experiments. This paper sheds light on indole diketopiperazine alkaloids as a potential structural motif against SARS-CoV-2 Mpro. Additionally, it highlights the potential of different molecular docking and molecular dynamics simulation approaches in the discrimination between active and inactive structurally related Mpro inhibitors.


Asunto(s)
Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/química , Alcaloides Indólicos/química , Piperazinas/química , SARS-CoV-2/enzimología , Alcaloides/química , Alcaloides/aislamiento & purificación , Antivirales/aislamiento & purificación , Aspergillus fumigatus/química , Inhibidores de Cisteína Proteinasa/aislamiento & purificación , Alcaloides Indólicos/aislamiento & purificación , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Piperazinas/aislamiento & purificación
9.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1715567

RESUMEN

Alkaloids are nitrogen-containing compounds, biosynthesized by both marine and terrestrial organisms, often with strong biological properties [...].


Asunto(s)
Alcaloides/química , Alcaloides/farmacología , Descubrimiento de Drogas , Alcaloides/aislamiento & purificación , Organismos Acuáticos/química , Productos Biológicos , Descubrimiento de Drogas/métodos , Extractos Vegetales
10.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1686898

RESUMEN

Cancer is the second most fatal disease worldwide, with colon cancer being the third most prevalent and fatal form of cancer in several Western countries. The risk of acquisition of resistance to chemotherapy remains a significant hurdle in the management of various types of cancer, especially colon cancer. Therefore, it is essential to develop alternative treatment modalities. Naturally occurring alkaloids have been shown to regulate various mechanistic pathways linked to cell proliferation, cell cycle, and metastasis. This review aims to shed light on the potential of alkaloids as anti-colon-cancer chemotherapy agents that can modulate or arrest the cell cycle. Preclinical investigated alkaloids have shown anti-colon cancer activities and inhibition of cancer cell proliferation via cell cycle arrest at different stages, suggesting that alkaloids may have the potential to act as anticancer molecules.


Asunto(s)
Alcaloides/química , Alcaloides/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Alcaloides/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Descubrimiento de Drogas , Humanos
11.
Med Sci Monit ; 28: e934102, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1651076

RESUMEN

BACKGROUND Heat-clearing and detoxifying herbs (HDHs) play an important role in the prevention and treatment of coronavirus infection. However, their mechanism of action needs further study. This study aimed to explore the anti-coronavirus basis and mechanism of HDHs. MATERIAL AND METHODS Database mining was performed on 7 HDHs. Core ingredients and targets were screened according to ADME rules combined with Neighborhood, Co-occurrence, Co-expression, and other algorithms. GO enrichment and KEGG pathway analyses were performed using the R language. Finally, high-throughput molecular docking was used for verification. RESULTS HDHs mainly acts on NOS3, EGFR, IL-6, MAPK8, PTGS2, MAPK14, NFKB1, and CASP3 through quercetin, luteolin, wogonin, indirubin alkaloids, ß-sitosterol, and isolariciresinol. These targets are mainly involved in the regulation of biological processes such as inflammation, activation of MAPK activity, and positive regulation of NF-kappaB transcription factor activity. Pathway analysis further revealed that the pathways regulated by these targets mainly include: signaling pathways related to viral and bacterial infections such as tuberculosis, influenza A, Ras signaling pathways; inflammation-related pathways such as the TLR, TNF, MAPK, and HIF-1 signaling pathways; and immune-related pathways such as NOD receptor signaling pathways. These pathways play a synergistic role in inhibiting lung inflammation and regulating immunity and antiviral activity. CONCLUSIONS HDHs play a role in the treatment of coronavirus infection by regulating the body's immunity, fighting inflammation, and antiviral activities, suggesting a molecular basis and new strategies for the treatment of COVID-19 and a foundation for the screening of new antiviral drugs.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Coronavirus/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , SARS-CoV-2/efectos de los fármacos , Alcaloides/química , Alcaloides/farmacología , Caspasa 3/efectos de los fármacos , Caspasa 3/genética , Coronavirus/metabolismo , Infecciones por Coronavirus/tratamiento farmacológico , Ciclooxigenasa 2/efectos de los fármacos , Ciclooxigenasa 2/genética , Bases de Datos Farmacéuticas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Flavanonas/química , Flavanonas/farmacología , Humanos , Indoles/química , Indoles/farmacología , Interleucina-6/genética , Lignina/química , Lignina/farmacología , Luteolina/química , Luteolina/farmacología , Proteína Quinasa 14 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 8 Activada por Mitógenos/genética , Simulación del Acoplamiento Molecular , Subunidad p50 de NF-kappa B/efectos de los fármacos , Subunidad p50 de NF-kappa B/genética , Naftoles/química , Naftoles/farmacología , Óxido Nítrico Sintasa de Tipo III/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/genética , Mapas de Interacción de Proteínas , Quercetina/química , Quercetina/farmacología , SARS-CoV-2/metabolismo , Transducción de Señal , Sitoesteroles/química , Sitoesteroles/farmacología , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
12.
Chem Biodivers ; 18(11): e2100674, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1615945

RESUMEN

Chemical investigation on a Streptomyces sp. strain MS180069 isolated from a sediment sample collected from the South China Sea, yielded the new benzo[f]isoindole-dione alkaloid, bhimamycin J (1). The structure was determined by extensive spectroscopic analysis, including HRMS, 1D, 2D NMR, and X-ray diffraction techniques. A molecular docking study revealed 1 as a new molecular motif that binds with human angiotensin converting enzyme2 (ACE2), recently described as the cell surface receptor responsible for uptake of 2019-CoV-2. Using enzyme assays we confirm that 1 inhibits human ACE2 79.7 % at 25 µg/mL.


Asunto(s)
Alcaloides/química , Sedimentos Geológicos/microbiología , Isoindoles/química , Streptomyces/química , Alcaloides/metabolismo , Alcaloides/farmacología , Alcaloides/uso terapéutico , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Sitios de Unión , COVID-19/virología , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Isoindoles/aislamiento & purificación , Isoindoles/metabolismo , Isoindoles/farmacología , Espectroscopía de Resonancia Magnética , Conformación Molecular , Simulación del Acoplamiento Molecular , SARS-CoV-2/aislamiento & purificación , Streptomyces/aislamiento & purificación , Streptomyces/metabolismo , Tratamiento Farmacológico de COVID-19
13.
Chem Biodivers ; 19(1): e202100668, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-1611203

RESUMEN

Forsyqinlingines C (1) and D (2), two C9 -monoterpenoid alkaloids bearing a rare skeleton, were isolated from the ripe fruits of Forsythia suspensa. Their structures, including absolute configurations, were fully elucidated by extensive spectroscopic data and ECD experiments. The plausible biogenetic pathway for compounds 1 and 2 was also proposed. In vitro, two C9 -monoterpenoid alkaloids showed anti-inflammatory activity performed by the inhibitory effect on the release of ß-glucuronidase in rat polymorphonuclear leukocytes (PMNs), as well as antiviral activity against influenza A (H1N1) virus and respiratory syncytial virus (RSV).


Asunto(s)
Alcaloides/química , Antiinflamatorios/química , Antivirales/química , Forsythia/química , Monoterpenos/química , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antivirales/aislamiento & purificación , Antivirales/farmacología , Forsythia/metabolismo , Frutas/química , Frutas/metabolismo , Glucuronidasa/metabolismo , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Conformación Molecular , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Factor de Activación Plaquetaria/farmacología , Ratas , Virus Sincitiales Respiratorios/efectos de los fármacos
14.
J Nat Prod ; 85(1): 284-291, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1596477

RESUMEN

We have previously reported that neoechinulin B (1a), a prenylated indole diketopiperazine alkaloid, shows antiviral activities against hepatitis C virus (HCV) via the inactivation of the liver X receptors (LXRs) and the resultant disruption of double-membrane vesicles. In this study, a two-step synthesis of the diketopiperazine scaffold of 1a was achieved by the base-induced coupling of 1,4-diacetyl-3-{[(tert-butyldimethylsilyl)oxy]methyl}piperazine-2,5-dione with aldehydes, followed by the treatment of the resultant coupling products with tetra-n-butylammonium fluoride. Compound 1a and its 16 derivatives 1b-q were prepared using this method. Furthermore, variecolorin H, a related alkaloid, was obtained by the acid treatment of 1a in MeOH. The antiviral evaluation of 1a and its derivatives revealed that 1a, 1c, 1d, 1h, 1j, 1l, and 1o exhibited both anti-HCV and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activities. The results of this study indicate that the exomethylene moiety on the diketopiperazine ring is important for the antiviral activities. The antiviral compounds can inhibit the production of HCV and SARS-CoV-2 by inactivating LXRs.


Asunto(s)
Alcaloides/farmacología , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Piperazinas/farmacología , SARS-CoV-2/efectos de los fármacos , Alcaloides/síntesis química , Alcaloides/química , Antivirales/síntesis química , Antivirales/química , Línea Celular Tumoral , Dicetopiperazinas/química , Dicetopiperazinas/farmacología , Humanos , Receptores X del Hígado/antagonistas & inhibidores , Estructura Molecular , Piperazinas/síntesis química , Piperazinas/química , Relación Estructura-Actividad , Transcripción Genética/efectos de los fármacos
15.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1538409

RESUMEN

Several coronaviruses (CoVs) have been associated with serious health hazards in recent decades, resulting in the deaths of thousands around the globe. The recent coronavirus pandemic has emphasized the importance of discovering novel and effective antiviral medicines as quickly as possible to prevent more loss of human lives. Positive-sense RNA viruses with group spikes protruding from their surfaces and an abnormally large RNA genome enclose CoVs. CoVs have already been related to a range of respiratory infectious diseases possibly fatal to humans, such as MERS, SARS, and the current COVID-19 outbreak. As a result, effective prevention, treatment, and medications against human coronavirus (HCoV) is urgently needed. In recent years, many natural substances have been discovered with a variety of biological significance, including antiviral properties. Throughout this work, we reviewed a wide range of natural substances that interrupt the life cycles for MERS and SARS, as well as their potential application in the treatment of COVID-19.


Asunto(s)
Antivirales/uso terapéutico , COVID-19/prevención & control , COVID-19/terapia , Alcaloides/química , Alcaloides/uso terapéutico , Antivirales/química , COVID-19/epidemiología , Brotes de Enfermedades , Flavonoides/química , Flavonoides/uso terapéutico , Humanos , Mutación , Pandemias , SARS-CoV-2/genética , Terpenos/química , Terpenos/uso terapéutico
16.
Molecules ; 26(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1526851

RESUMEN

There have been more than 150 million confirmed cases of SARS-CoV-2 since the beginning of the pandemic in 2019. By June 2021, the mortality from such infections approached 3.9 million people. Despite the availability of a number of vaccines which provide protection against this virus, the evolution of new viral variants, inconsistent availability of the vaccine around the world, and vaccine hesitancy, in some countries, makes it unreasonable to rely on mass vaccination alone to combat this pandemic. Consequently, much effort is directed to identifying potential antiviral treatments. Marine brominated tyrosine alkaloids are recognized to have antiviral potential. We test here the antiviral capacity of fourteen marine brominated tyrosine alkaloids against five different target proteins from SARS-CoV-2, including main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H). These marine alkaloids, particularly the hexabrominated compound, fistularin-3, shows promising docking interactions with predicted binding affinities (S-score = -7.78, -7.65, -6.39, -6.28, -8.84 Kcal/mol) for the main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H), respectively, where it forms better interactions with the protein pockets than the native interaction. It also shows promising molecular dynamics, pharmacokinetics, and toxicity profiles. As such, further exploration of the antiviral properties of fistularin-3 against SARS-CoV-2 is merited.


Asunto(s)
Alcaloides/química , SARS-CoV-2/metabolismo , Alcaloides/aislamiento & purificación , Alcaloides/uso terapéutico , Antivirales/química , Antivirales/metabolismo , Antivirales/uso terapéutico , Sitios de Unión , COVID-19/virología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Halogenación , Humanos , Isoxazoles/química , Isoxazoles/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Relación Estructura-Actividad , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo , Tratamiento Farmacológico de COVID-19
18.
J Gen Virol ; 102(8)2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1368372

RESUMEN

Infectious bronchitis virus (IBV) is an economically important coronavirus, causing damaging losses to the poultry industry worldwide as the causative agent of infectious bronchitis. The coronavirus spike (S) glycoprotein is a large type I membrane protein protruding from the surface of the virion, which facilitates attachment and entry into host cells. The IBV S protein is cleaved into two subunits, S1 and S2, the latter of which has been identified as a determinant of cellular tropism. Recent studies expressing coronavirus S proteins in mammalian and insect cells have identified a high level of glycosylation on the protein's surface. Here we used IBV propagated in embryonated hens' eggs to explore the glycan profile of viruses derived from infection in cells of the natural host, chickens. We identified multiple glycan types on the surface of the protein and found a strain-specific dependence on complex glycans for recognition of the S2 subunit by a monoclonal antibody in vitro, with no effect on viral replication following the chemical inhibition of complex glycosylation. Virus neutralization by monoclonal or polyclonal antibodies was not affected. Following analysis of predicted glycosylation sites for the S protein of four IBV strains, we confirmed glycosylation at 18 sites by mass spectrometry for the pathogenic laboratory strain M41-CK. Further characterization revealed heterogeneity among the glycans present at six of these sites, indicating a difference in the glycan profile of individual S proteins on the IBV virion. These results demonstrate a non-specific role for complex glycans in IBV replication, with an indication of an involvement in antibody recognition but not neutralisation.


Asunto(s)
Coronavirus/fisiología , Polisacáridos/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Alcaloides/química , Alcaloides/farmacología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Cromatografía Liquida , Biología Computacional/métodos , Coronavirus/efectos de los fármacos , Infecciones por Coronavirus/veterinaria , Regulación Viral de la Expresión Génica , Glicosilación/efectos de los fármacos , Virus de la Bronquitis Infecciosa/fisiología , Modelos Moleculares , Conformación Molecular , Peso Molecular , Pruebas de Neutralización , Oligosacáridos/química , Oligosacáridos/metabolismo , Polisacáridos/química , Enfermedades de las Aves de Corral/virología , Transporte de Proteínas , Espectrometría de Masa por Ionización de Electrospray , Glicoproteína de la Espiga del Coronavirus/genética , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
19.
Molecules ; 26(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1362396

RESUMEN

The specificity of inhibition by 6,6'-dihydroxythiobinupharidine (DTBN) on cysteine proteases was demonstrated in this work. There were differences in the extent of inhibition, reflecting active site structural-steric and biochemical differences. Cathepsin S (IC50 = 3.2 µM) was most sensitive to inhibition by DTBN compared to Cathepsin B, L and papain (IC50 = 1359.4, 13.2 and 70.4 µM respectively). DTBN is inactive for the inhibition of Mpro of SARS-CoV-2. Docking simulations suggested a mechanism of interaction that was further supported by the biochemical results. In the docking results, it was shown that the cysteine sulphur of Cathepsin S, L and B was in close proximity to the DTBN thiaspirane ring, potentially forming the necessary conditions for a nucleophilic attack to form a disulfide bond. Covalent docking and molecular dynamic simulations were performed to validate disulfide bond formation and to determine the stability of Cathepsins-DTBN complexes, respectively. The lack of reactivity of DTBN against SARS-CoV-2 Mpro was attributed to a mismatch of the binding conformation of DTBN to the catalytic binding site of Mpro. Thus, gradations in reactivity among the tested Cathepsins may be conducive for a mechanism-based search for derivatives of nupharidine against COVID-19. This could be an alternative strategy to the large-scale screening of electrophilic inhibitors.


Asunto(s)
Alcaloides/farmacología , Proteasas de Cisteína/metabolismo , Alcaloides/química , Animales , Antivirales/farmacología , Sitios de Unión , COVID-19/metabolismo , Dominio Catalítico , Catepsinas/farmacología , Línea Celular Tumoral , Proteasas de Cisteína/química , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Humanos , Ratones , Simulación del Acoplamiento Molecular/métodos , Nuphar/química , Papaína/farmacología , Extractos Vegetales/farmacología , Unión Proteica , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
20.
Chem Biol Interact ; 341: 109449, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1157165

RESUMEN

BACKGROUND: COVID-19, a severe global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged as one of the most threatening transmissible disease. As a great threat to global public health, the development of treatment options has become vital, and a rush to find a cure has mobilized researchers globally from all areas. SCOPE AND APPROACH: This review focuses on deciphering the potential of different secondary metabolites from medicinal plants as therapeutic options either as inhibitors of therapeutic targets of SARS-CoV-2 or as blockers of viral particles entry through host cell receptors. The use of medicinal plants containing specific phytomoieties could be seen in providing a safer and long-term solution for the population with lesser side effects. Key Findings and Conclusions: Considering the high cost and time-consuming drug discovery process, therapeutic repositioning of existing drugs was explored as treatment option in COVID-19, however several molecules have been retracted as therapeutics either due to no positive outcomes or the severe side effects. These effects call for exploring the alternate treatment options which are therapeutically effective as well as safe. Keeping this in mind, phytopharmaceuticals derived from medicinal plants could be explored as important resources in the development of COVID-19 treatment, as their role in the past for treatment of viral diseases like HIV, MERS-CoV, and influenza has been well reported. Considering this fact, different phytoconstituents such as flavonoids, alkaloids, tannins and glycosides etc. Possessing antiviral properties against coronaviruses and possessing potential against SARS-CoV-2 have been reviewed in the present work.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Fitoquímicos/farmacología , Alcaloides/química , Alcaloides/farmacología , Antraquinonas/química , Antraquinonas/farmacología , Antivirales/química , Flavonoides/química , Flavonoides/farmacología , Humanos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Fitoquímicos/química , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Saponinas/química , Saponinas/farmacología , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA